Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations

نویسنده

  • D. T. Shindell
چکیده

The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF) calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016 W m−2. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18 W m−2 higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in a slightly stronger response per unit forcing during later decades. Tropical precipitation shifts south during boreal summer from 1850 to 1970, but then shifts northward from 1970 to 2000, following upper tropospheric temperature gradients more strongly than those at the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM

Improved estimates of the radiative forcing from tropospheric ozone increases since the preindustrial have been calculated with the tropospheric chemistry model used at the Goddard Institute for Space Studies (GISS) within the GISS general circulation model (GCM). The chemistry in this model has been expanded to include simplified representations of peroxyacetylnitrates and non-methane hydrocar...

متن کامل

AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6

The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozonedepleting hal...

متن کامل

Linking global to regional models to assess future climate impacts on surface ozone levels in the United States

[1] We investigate the impact of climate change on future air quality in the United States with a coupled global/regional scale modeling system. Regional climate model scenarios developed by dynamically downscaling outputs from the GISS GCM are used by CMAQ to simulate present air pollution climatology, and modeled surface ozone mixing ratios are compared with recent observations. Though the mo...

متن کامل

Attribution of historical ozone forcing to anthropogenic emissions

Anthropogenic ozone radiative forcing is traditionally separately attributed to tropospheric and stratospheric changes assuming that these have distinct causes1. Using the interactive composition–climate model GISS-E2-R we find that this assumption is not justified. Our simulations show that changes in emissions of tropospheric ozone precursors have substantial effects on ozone in both regions,...

متن کامل

Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century

The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry– climate model (UK Met Office’s Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013